Bosch Commercial Packaged Water Source Heat Pump

EC Model

Guide Specifications

Size Range: 6 ton to 30 ton

Cooling Range (WL): 72,400 BTU/h to 386,000 BTU/h

Heating Range (WL): 79,500 BTU/h to 472,000 BTU/h

1.0 - General

Furnish and install FHP water source heat pumps as indicated on the plans with capacities and characteristics as listed in the schedule and the specifications that follow. The units shall be manufactured in an ISO 9001:2000 certified facility.

2.0 - Horizontal/Vertical Unit Configurations

The units shall be designed to operate with entering fluid temperatures between 50°F (10°C) and 100°F (38°C) in cooling and between 50°F (10°C) and 80°F (27°C) in heating. With the optional factory installed extended range package, units shall operate with entering fluid temperatures between 50°F (10°C) and 110°F (43.3°C) in cooling and between 20°F (-6.6°C) and 80°F (27°C) in heating. Equivalent units from other manufacturers can be proposed, provided approval to bid is given 10 days prior to bid closing.

Unit sizes 072-120 shall be rated and certified in accordance with ANSI/AHRI/ASHRAE/ISO (American National Standard Institute/Air-Conditioning, Heating and Refrigeration Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers/International Organization for Standardization) 13256-1. All equipment with a nominal capacity of 135,000 BTUH Total Cooling or lower must be listed in the current AHRI Applied Equipment Directory under the AHRI Standard AHRI/ISO- 13256-1, WLHP, GWHP and GLHP certification points. All equipment in this section must meet or exceed the DOE mandated minimum EER's and COP's as listed in ASHRAE 90.1 as follows:

All equipment shall be tested (to verify operation of major components and safety devices), examined, and determined to comply with the requirements of the standard UL-1995 (Underwriters Laboratories 1995) for the United States; for Heating and Cooling Equipment and CAN/CSA-C22.2 NO.236 for Canada, by Intertek Testing Laboratories (ETL). Each unit shall have AHRI/ISO and ETL-US-C labels visible to the installer/contractor.

3.0 - Basic Construction

A. Units shall have the airflow arrangement as shown on the plans. If units with these arrangements are not used, the contractor supplying the water source heat pumps is responsible for any extra costs incurred by other trades and must submit detailed mechanical drawings showing ductwork requirements and changes or relocation of any other mechanical or electrical system. If other arrangements make servicing difficult, the contractor must provide access panels and clear routes to ease service. The architect must approve all changes 10 days prior to bid.

B. All units shall have stainless steel drain pans to comply with this project's IAQ requirements. Painted steel or plastic is not acceptable.

C. The cabinet shall be fabricated from heavy-gauge galvanized steel for superior corrosion protection. All interior surfaces shall be lined as standard with 1/2" (12.7mm) thick, multi density, coated, glass fiber insulation. Insulation within the air handling section shall not have any exposed edges. All insulation must meet NFPA 90A (non-combustible, non-hydroscopic, and anti-fungal) and be certified to meet the
GREENGUARD® Indoor Air Quality Standard for Low Emitting Products. One blower access panel and two compressor compartment access panels shall be removable with supply and return air ductwork in place. As an option, units may have ½" (12.7mm) thick closed cell foam insulation and shall meet the density and compression requirements of ASTM D 1056, the water absorption requirements of ASTM D-1667 and the tensile and elongation requirements of ASTM D-412. Closed cell foam shall meet the flammability requirements of FMVSS302 and UL 94.

D. Unit shall have a floating compressor or pan consisting of a 1/2" (12 mm) thick high-density elastomeric pad between the compressor base plate and the unit base pan to prevent transmission of vibration to the structure.

E. Units shall have a 1” filter rack and 1” thick throwaway type glass fiber filter as standard. Units shall have an optional 2” thick pleated MERV 8 filter (size 007-070) or MERV 13 filter available. The filter rack shall incorporate a 1” duct flange. The units shall have an insulated divider panel between the air handling section and the compressor section to minimize the transmission of compressor noise, and to permit service testing without air bypass.

F. Cabinets shall have separate holes and knockouts for entrance of line voltage and low voltage control wiring. Supply and return water connections shall be brass female pipe thread fittings and mounted flush to cabinet exterior. Connections that require a back-up wrench or that extrude past the unit corner post are not acceptable. Condensate connections will be stainless steel female pipe thread fittings. Plastic is not acceptable.

4.0 - Fan and Motor Assembly

A. 72,000 Btu/Hr to 360,000 Btu/Hr models shall have a belt driven double width double inlet (DWDI) forward curve type with dynamically balanced wheel(s). The fan motor(s) shall be 1725 (1, 1.5, and 2HP) or 3450 (5HP) RPM 56 frame sealed ball bearing type.

B. Units supplied without permanently lubricated motors must provide external oilers for easy service.

C. The fan and motor assembly must be capable of overcoming the external static pressures as shown on the schedule.

D. The airflow/static pressure rating of the unit shall be based on a wet coil and a clean filter in place. Ratings based on a dry coil shall not be acceptable.

5.0 - Refrigerant Circuit

Units shall use R-410A refrigerant. All units shall have a factory sealed and fully charged refrigerant circuit with the following components:

A. Hermetic compressor: Scroll compressors shall be specifically designed for R-410A refrigerant and shall be externally isolated and with thermal overload protection.

B. Refrigerant metering by thermal expansion valves (TXV) only

C. The finned tube heat exchanger shall be constructed of lanced aluminum fins not exceeding sixteen fins per inch bonded to rifled copper tubes in a staggered pattern and will have a 600 PSIG (4140 kPa) working pressure. The heat exchanger shall have aluminum end sheets. Optional Air Coil Protection: The finned tube heat exchanger shall have optional tin plated protective coil coating. This corrosion protection shall consist of tin plated copper tubing. Painted, dipped or e-coated heat exchangers are not acceptable.

D. Reversing valve. Reversing valves shall be four-way solenoid activated refrigerant valves which shall fail in the heating operation should the solenoid fail to function. Reversing valves which fail to the cooling operation shall not be allowed.
E. Coaxial (tube in tube) refrigerant to water heat exchanger. Refrigerant to water heat exchangers shall be of copper inner water tube and steel outer refrigerant tube design rated to withstand 600 PSIG working refrigerant pressure and 400 PSIG working water pressure. Shell and Tube style refrigerant to water heat exchangers shall be treated as pressure vessels and shall require refrigerant pressure relief valves piped to the exterior of the building. The contractor supplying the water source heat pumps with Shell and Tube heat exchangers shall be responsible for any additional installation costs. Brazed Plate water to refrigerant heat exchangers shall require additional centrifugal separators added to the supply water piping at each unit. Each separator shall have an automated clean out valve piped to a waste line. The contractor supplying water source heat pumps with Brazed Plate heat exchangers shall be responsible for any additional costs. Option for Cupro-Nickel (CuNi) water coil – The refrigerant to water heat exchanger shall be of Cupro-Nickel inner water tube construction.

F. Safety controls include both a high pressure and low pressure switch. Temperature sensors shall not replace these safety switches. See the controls section of this specification for additional information.

G. Access fittings shall be factory installed on high and low pressure refrigerant lines to facilitate field service.

H. Activation of any safety device shall prevent compressor operation via a lockout circuit. The lockout circuit shall be reset at the thermostat or at the contractor supplied disconnect switch. Units which may be reset at the disconnect switch only shall not be acceptable. Refer to solid-state safety circuit below.

6.0 – Electrical and Controls

A. Controls and safety devices will be factory wired and mounted within the unit. Controls shall include fan relay, compressor contactor, 24V transformer, reversing valve coil and solid-state lockout controller, Unit Protection Module (UPM). The standard transformer shall be rated for a minimum 75 VA. All units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 volts and provide heating or cooling as required by the remote thermostat/sensor.

B. Optional transformers shall be rated 100 VA and shall have a push button reset circuit breaker on the secondary power.

C. Solid-State Safety Circuit - All units shall have a solid-state UPM safety control circuit with the following features:

1. Anti-short cycle time delay (5 minute delay on break).
2. Random start time delay on initial power.
4. 120 second low-pressure switch bypass timer.
5. High refrigerant pressure shutdown.
6. Low refrigerant pressure shutdown.
7. Low water temperature shutdown (fluid freeze protection) (adjustable for closed loop systems).
8. Air coil freeze protection shutdown.
9. High condensate level shutdown.
10. 24 VAC alarm output for remote fault indication.

The UPM shall automatically reset after a safety shut down. Restart the unit if the cause of the shutdown no longer exists (except for low temperature which will try 2-4 times within 60 minutes) and high condensate level shutdowns). Should a fault re-occur within 60 minutes after reset, then a “hard” lockout will occur (the exception is brown out fault, where the unit will automatically reset after voltage is corrected by going into random start). A light emitting diode (LED) shall annunciate the following alarms: brown out, high refrigerant pressure, low refrigerant pressure, low water temperature and a high level of condensate in the drain pan. The LED will display each fault condition as soon as the fault occurs. If a hard lockout occurs, then the fault LED will display the type of fault until the unit is reset.
The UPM shall feature the following field configurable adjustments:

1. Lock out reset on thermostat interruption or power reset.
2. 2 or 4 restart attempts before a hard lockout.
3. Test mode (reduces all time delays to 10 seconds for diagnostic work).
4. Antifreeze setting for low water temperature sensor.

Safety devices include:
1. Low pressure cutout set a 40 PSIG (280 kPA) for loss of charge protection (freezestat and/or high discharge gas temperature sensor is not acceptable).
2. High pressure cutout control set at 600 PSIG (4125 kPA) – see section 5.0, subsection F.
3. Low supply water temperature sensor that detects drops in refrigerant temperature that could result in water coax heat exchanger freezing.
4. Low air coil temperature sensor that detects drops in refrigerant temperature that could result in air heat exchanger freezing.
5. High level condensate sensor that shuts off the compressor if the condensate drain pan fills with water.
6. On board voltage detection that disables the compressor control circuit if there are extreme variations in supply voltage. A terminal block with screw terminals shall be provided for control wiring.

D. General Electric Options shall be either factory or field installed.

The optional Pump/valve relay enables a pump/valve operation when calling for compressor operation.

The optional Energy management switch (EMS) enables remote operation of WSHP (water source heat pump).

The optional Phase monitor protects the compressor from operating in reverse rotation on three phase units (460V/3Ph only). It also offers phase imbalance protection and loss of phase protection to the unit.

The optional Blower monitor relay provides indication that the blower fan motor is ON/OFF.

The optional Flow proving switch (differential pressure) can shut down the WSHP before the unit can enter a hard lockout fault if there are water flow issues. This factory installed internally mounted or field installed accessory externally mounted device shall be rated at 600psi.

The optional Fire alarm relay engages the blower fan on the WSHP to evacuate smoke in the event of a fire. Please consult with Bosch EAP group prior to selecting this option.

The optional Boilerless control shall activate an electric duct heater (external unit only – by others) and disable compressor should water temperature drop below set point. Includes a relay and splitting the power supply to the unit into a blower motor and control power supply and a compressor power supply. The relay (when energized) deactivates the compressor control circuit.

E. WSHP DDC Control (Multiple protocol control)

Unit shall be equipped with a factory installed DDC control capable of interfacing with BacNet, Modbus, N2 and LonWorks (requires an optional LON card). The controller shall be preprogrammed to control the unit and monitor the safety controls. The unit shall be able to operate as a standalone or be incorporated into the building management system. A leaving water and leaving air sensor shall be installed in the unit. Wall sensors shall be available for controlling zone temperature.

Units shall have all the features above (UPM) and the state of the art WSHP multiple protocol interface board (Direct Digital Control (DDC)) will have the ability to be viewed in the Control Air M, Control Air M+, Virtual Control Air M (Equipment Touch™ App), or Field Assistant user interface. All point objects will have the ability to be viewed in the Control Air M user interface. The following points must be available at a central or remote computer location:
1. Space temperature
2. Leaving water temperature
3. Discharge air temperature
4. Command of space temperature set point
5. Cooling status
6. Heating status
7. Low temperature sensor alarm
8. High pressure switch alarm
9. Fan on/off position of space thermostat
10. Unoccupied/occupied command
11. Cooling demand
12. Heating demand
13. Fan "ON/AUTO" command
14. Fault prevention with auto reset
15. Itemized fault code viewed with Control Air M interface

Optional WSHP multiple protocol control features shall include:

1. Three-speed fan control. Controller shall automatically, based upon space temperature input, operate the fan at the lowest of three (3) selectable speeds to achieve space temperature set point.
2. Two-position OA (outdoor air) damper
3. ETO only - Modulating OA damper with DCV (demand controlled ventilation)
4. Hot gas reheat solenoid valve
5. Two-position waterside economizer control
6. ETO only - Modulating waterside economizer control
7. Single stage electric auxiliary heat
8. Power fail restart delay

F. Multiple-protocol WSHP controller remote ZS sensors for DDC (direct digital controls) control options. Only Bosch ZS sensors can be used with the WSHP controller. Sensors are available as follows, and all sensors below offer monitoring of space temperature only, or space temperature and CO2, or space temperature and humidity, or space temperature and CO2 and humidity.

1. ZS Base (ZS-1 or ZS-1H) sensor with a communication port.
2. ZS Slide-bar (ZS-1S) sensor with communication port, occupancy status indicator, local occupancy override and set point adjustment.
3. ZS Push (ZSP-1, ZSP-1H, or ZSP-1HC) sensor with communication port, occupancy status indicator, local occupancy override, set point adjustment, LCD (liquid crystal diode) display, alarm indicator and fan speed control.
4. ZS Manager (ZSM-1, ZSM-1H, or ZSM-1HC) sensor with communication port, occupancy status indicator, local occupancy override, set point adjustment, LCD display, alarm indicator, fan speed control, cooling/heating/fan only mode control and °F to °C conversion.

7.0 – Piping

A. Supply and return water connections shall be copper FPT fittings and shall be securely mounted flush to the cabinet corner post allowing for connection to a flexible hose without the use of a backup wrench.

B. All water connections and electrical knockouts must be in the compressor compartment corner post to not interfere with the serviceability of unit. Contractor shall be responsible for any extra costs involved in the installation of units that do not have this feature.

8.0 – Options
A. Extended range option shall consist of coaxial coil insulation and insulated suction pipes to allow for operation with entering water temperatures (EWT) from 25 to 110°F.

B. Extra quiet construction:
Optional technologically advanced compressor blanket shall be provided on units

C. Hot Gas Reheat (HGRH):
Units as noted on the schedule shall be equipped with optional Hot Gas Reheat (HGRH). HGRH shall be either ON/OFF control or modulating (modulating ETO only) as noted in the specifications. On/Off HGRH shall be controlled by a humidistat connected to the unit H terminal and shall start the unit in the reheat mode should the humidity be above set point once the thermostat control is satisfied. Cooling or heating requirements shall take precedent over HGRH. Optional Modulating Hot Gas Reheat (MHGRH) shall be active during the cooling mode. A 0 – 10 VDC signal from a sensor located in the unit discharge air supply shall modulate the hot gas valve to maintain an adjustable preset leaving air temperature to the conditioned space.

D. Hot Gas Bypass (HGBY):
For units as noted on the schedule, supply each unit with a ETL listed modulating hot gas bypass valve with factory supplied and installed controls to prevent air coils from frost development by taking hot gas and bypassing the water coil and expansion device and reintroducing the hot gas into the refrigerant line prior to the air coil. The hot gas bypass valve shall maintain a minimum refrigerant suction pressure to allow for a light load-cooling mode or a low entering air temperature-cooling mode.

E. Waterside Economizer:
Waterside economizer shall be completely installed at the factory, with an additional condensate drain pan, motorized 3-way valve, aqua stat, and all internal electric controls. Waterside economizer shall be rated at 400 psi and UL listed for application with the heat pump. This option is externally mounted outside the unit. NOTE: if unit is ordered with DDC controls, no aqua stat will be installed by the factory.

F. Hot Water Coil:
An additional coil can be provided for hydronic heating (boiler not included).

9.0 – Quality

All units listed in this section must be rated in accordance with ANSI/AHRI/ASHRAE/ISO 13256-1 (latest edition) performance standard. The applicable units shall have an AHRI/ISO affixed label. Standard cabinet insulation shall meet NFPA 90A (National Fire Protection Association 90A) requirements. Standard cabinet insulation shall meet air erosion and mold growth limits of UL-181 (Underwriters Laboratories 181); stringent fungal resistance test per ASTM-C1071 and ASTM G21, and shall meet a zero (0) level bacteria growth per ASTM G22 (American Society for Testing and Materials G22).

10.0 – Accessories

A. The water source heat pump should be wired to a 24V thermostat if DDC controls are not used. Bosch recommends the Bosch Connected Control BCC50 or BCC100 thermostats as a suitable option.

B. All units shall be connected with hoses. The hoses shall be either 2 or 3 feet long, braided stainless steel, fire rated hoses complete with adapters. Non-fire rated hoses are not acceptable. Optional ball valves with P/T ports, flow controller, Y strainer and electric valve shall be included as specified in the schedule.

C. Electric duct heaters (by others) shall be field installed as slip-in type and shall be UL approved for zero clearance to combustible surfaces. The heater shall bear a UL/CSA label. Control panel and element housing shall be constructed of heavy gage Galvanized steel. All heating elements shall be made of nickel/chromium resistance wire with ends terminated by means of stakeing and Heliarc welding to machine screws. Heating element support structure shall consist of Galvanized steel wire formed and
constructed to support ceramic bushings through which the heating element passes. Control cabinet shall be constructed of heavy gage galvanized steel with multiple knockouts for field wiring. Control cabinet shall have a solid cover also of heavy gage galvanized steel and held in place with hinges and tool-release latches.

Over-current protection by means of factory-installed fusing within the control cabinet shall be provided for heaters rated at more than 48 amps. Heating elements shall be subdivided and fused accordingly.

All wiring, component sizing, component spacing and protective devices within the control cabinet shall be factory installed and comply with NEC (National Electrical Code) and UL standards. All heaters shall function properly with a 60 Hz power supply.

A wiring diagram depicting layout and connections of electrical components within the control cabinet shall be affixed to the inside of the control cabinet cover.

A rating plate label shall be affixed to the exterior of the control cabinet cover which states model number, serial number, volts, amps, phase, frequency, control volts, volt-amps and minimum airflow requirements.

D. Duct heater (by others) shall be supplied with primary over temperature protection by built in disc type automatic reset thermal cutouts and secondary over temperature protection by built in disc type manually resettable thermal cutouts. These devices must function independently of one another and are not acceptable if series connected in the control circuit wiring. A disconnecting magnetic control circuit is required. All duct heaters will require either a fan interlock circuit or an airflow switch.

E. Units shall have an optional 2-way electrically operated shut-off valve mounted externally to the unit cabinet.

F. Units shall have an optional water flow regulating valve mounted externally to the unit set to 3 gallons per minute (GPM) of water flow per nominal ton of refrigeration capacity.